An Improved Hybrid Algorithm Based on PSO and BP for Feedforward Neural Networks
نویسندگان
چکیده
In this paper, an improved hybrid algorithm combining particle swarm optimization (PSO) with backpropagation algorithm (BP) is proposed to train feedforward neural networks (FNN). PSO is a global search algorithm, but the swarm in PSO is easy to lose its diversity, which results in premature convergence. On the other hand, BP algorithm is a gradient-descent-based method which has good local search ability around the global minima. Hence, the presented algorithm in this study combines PSO with BP to perform double search. Moreover, in order to improve the diversity of the swarm in the PSO, each particle in the swarm and its best position are disturbed by a random function, and the best position of all particles are reset as the optimum weights of FNN obtained by BP. The proposed algorithm improves the diversity of the swarm as well as reduces the likelihood of the swarm being trapped into local minima on the error surface. Compared with the traditional learning algorithms, the improved learning algorithm has much better convergence accuracy and rate. Finally, the experimental results are given to verify the efficiency and effectiveness of the proposed algorithm.
منابع مشابه
Hybridization of Artificial Neural Network and Particle Swarm Optimization Methods for Time Series Forecasting
Recently, Particle Swarm Optimization (PSO) has evolved as a promising alternative to the standard backpropagation (BP) algorithm for training Artificial Neural Networks (ANNs). PSO is advantageous due to its high search power, fast convergence rate and capability of providing global optimal solution. In this paper, the authors explore the improvements in forecasting accuracies of feedforward a...
متن کاملPrediction of Gain in LD-CELP Using Hybrid Genetic/PSO-Neural Models
In this paper, the gain in LD-CELP speech coding algorithm is predicted using three neural models, that are equipped by genetic and particle swarm optimization (PSO) algorithms to optimize the structure and parameters of neural networks. Elman, multi-layer perceptron (MLP) and fuzzy ARTMAP are the candidate neural models. The optimized number of nodes in the first and second hidden layers of El...
متن کاملPrediction of Gain in LD-CELP Using Hybrid Genetic/PSO-Neural Models
In this paper, the gain in LD-CELP speech coding algorithm is predicted using three neural models, that are equipped by genetic and particle swarm optimization (PSO) algorithms to optimize the structure and parameters of neural networks. Elman, multi-layer perceptron (MLP) and fuzzy ARTMAP are the candidate neural models. The optimized number of nodes in the first and second hidden layers of El...
متن کاملEstimation of groundwater level using a hybrid genetic algorithm-neural network
In this paper, we present an application of evolved neural networks using a real coded genetic algorithm for simulations of monthly groundwater levels in a coastal aquifer located in the Shabestar Plain, Iran. After initializing the model with groundwater elevations observed at a given time, the developed hybrid genetic algorithm-back propagation (GA-BP) should be able to reproduce groundwater ...
متن کاملEstimation of groundwater level using a hybrid genetic algorithm-neural network
In this paper, we present an application of evolved neural networks using a real coded genetic algorithm for simulations of monthly groundwater levels in a coastal aquifer located in the Shabestar Plain, Iran. After initializing the model with groundwater elevations observed at a given time, the developed hybrid genetic algorithm-back propagation (GA-BP) should be able to reproduce groundwater ...
متن کامل